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Abstract

Self-supervised contrastive learning models, such as CLIP,
have set new benchmarks for vision-language models in
many downstream tasks. However, their dependency on
rigid one-to-one mappings overlooks the complex and of-
ten multifaceted relationships between and within texts and
images. To this end, we introduce RANKCLIP, a novel
pretraining method that extends beyond the rigid one-to-
one matching framework of CLIP and its variants. By ex-
tending the traditional pair-wise loss to list-wise, and lever-
aging both in-modal and cross-modal ranking consistency,
RANKCLIP improves the alignment process, enabling it to
capture the nuanced many-to-many relationships between
and within each modality. Through comprehensive exper-
iments, we demonstrate the effectiveness of RANKCLIP
in various downstream tasks, notably achieving significant
gains in zero-shot classifications over state-of-the-art meth-
ods, underscoring the importance of this enhanced learn-
ing process. Code and model checkpoints are available at
https://github.com/Jam1ezhang/RankCLIP.

1. Introduction
In the realm of computer vision (CV) [55], natural lan-
guage processing (NLP) [7], and multimodal deep learn-
ing [4, 25, 60], the alignment between visual and textual
modalities [5, 49] has emerged as a cornerstone for down-
stream applications, ranging from image captioning [18] to
zero-shot classification [42]. Contrastive Language-Image
Pretraining (CLIP) [43] marks a significant advancement in
this field, demonstrating incredible performance from train-
ing on large amounts of text-image pairs to create self-
supervised models that understand [6, 22, 23] and gen-
erate [11, 44] descriptions of visual contents. Following
the success of this contrastive learning paradigm, many re-
cent works have been developed upon the original CLIP.
More specifically, these enhancements focus on optimizing
data efficiency through intrinsic supervision [28], as well
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Figure 1. Comparison of learning outcomes between CLIP and
RANKCLIP using three text-image pairs: dog (red), cat (blue),
and car (yellow). (a) Contrastive loss treats all unmatched re-
lationships equally, failing to distinguish latent similar attributes
between dog and cat versus airplane. RANKCLIP addresses this
issue by leveraging the shared attributes in (c) during training, im-
proving the final trained embedding distribution from (b) to (d).

as improving downstream performance via cross-modal late
interaction [59], hierarchical feature alignment [15], ge-
ometric consistency regularization [19], additional learn-
ing [36], adaptive loss [58], hierarchy-aware attentions [17],
and softer cross-modal alignment [16].

Despite the improvements, these methods often have re-
liance on strict pairwise, cross-modal, and one-to-one map-
pings between images and texts, overlooking the actual
many-to-many relationships that exist both cross-modal and
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in-modal in real-world data [8]. For example, as shown
in Fig. 1, while pretrained models like CLIP can correctly
classify dog, cat and airplane, they do not necessarily
learn that dog and cat are more close to each other than
dog and airplane, in terms of both in-modal (dog text
is more similar to cat text than to airplane text) and
cross-modal (dog text is more matched to cat image than
to airplane image) similarities. Since it is rooted from
the current contrastive loss that only the correct pairs are op-
timized while the rest of the unmatched pairs are treated the
same, a large amount of information not used and unknown
to the model during and after the training process.

Recognizing the complex many-to-many relationships as
well as the rich information contained within both in-modal
and cross-modal data, we introduce Ranking-Consistent
Language-Image Pretraining, (RANKCLIP), which em-
ploys ranking consistency to learn and optimize similarity
levels both between (cross-modal) and within (in-modal)
the text-image pairs. The concept of ranking consistency
stems from the simple observations that similar texts often
correlate with similar images, as seen with the dog, cat
and airplane example in Fig. 1. It effectively captures
secondary similarity relationships among unmatched pairs,
enabling the model to learn more efficiently for free com-
pared to relying solely on matched pairs. Ranking consis-
tency is conveniently modeled as an additional loss term
to the traditional contrastive loss, requiring no extra exter-
nal modules. It acts as a plug-and-play improvement for
many existing methods, including those focusing on data-
efficiency [28], potentially boosting performance in both ef-
ficiency and effectiveness.

The main contributions of this paper are: 1) RANKCLIP,
a novel contrastive pretraining method that uses rank-
ing consistency to exploit the many-to-many relationships
within data, thereby enhancing performance in downstream
tasks such as zero-shot classification and retrieval accuracy;
and 2) through comprehensive experiments conducted on
multiple datasets, we demonstrate the superior effective-
ness of RANKCLIP in improving pretraining model per-
formance without requiring any additional data or compu-
tational resources.

2. Related Work
Vision-language pretraining has witnessed significant ad-
vancements over the past years [3, 14, 31]. Models such
as CLIP [43], ALIGN [26] and FLAVA [49] have pioneered
the contrastive learning paradigm applied with text-image
pairs, showcasing remarkable performance and robustness
in downstream tasks. Many follow-up works, mostly built
upon CLIP, have been proposed since then. Li et al.
[28] introduced DeCLIP, improving zero-shot performance
through intrinsic supervision. FILIP [59] advances CLIP’s
alignment between image patches and text with a cross-

modal interaction mechanism. Gao et al. [15] developed
PyramidCLIP, using hierarchical feature alignment to boost
model efficiency and performance. Additionally, SLIP [36]
merges self-supervised learning with CLIP pre-training for
improved visual representation and accuracy. Goel et al.
[19] introduced CyCLIP, augmenting CLIP with geometric
consistency regularizers to enhance robustness and perfor-
mance under varied conditions.

Recently, Yang et al. [58] introduced ALIP, an adap-
tive pre-training model that enhances language-image align-
ment using raw text and synthetic captions with dy-
namic adjustments. HiCLIP [17] refines CLIP by adding
hierarchy-aware attentions to uncover semantic hierarchies
in images and texts. EqSim [57] incorporates equivari-
ance loss into vision-language models, significantly im-
proving sensitivity to semantic changes in image-text pairs.
Additionally, SoftCLIP [16] softens CLIP’s one-to-one
constraint, enabling more flexible cross-modal alignment
through fine-grained adjustments.

Compared with existing approaches, RANKCLIP sets it-
self apart by fully leveraging the many-to-many relation-
ships within each batch of text-image pairs, promoting
learning from both matched and unmatched pairs with vary-
ing similarities by integrating in-modal and cross-modal
list-wise ranking consistencies into the contrastive training
objective. Crucially, RANKCLIP diverges from existing
models’ pair-wise training objective by adopting a global,
list-wise optimization approach. In other words, it consid-
ers the rankings of all images and texts collectively within
each batch, rather than focusing on pairwise similarities as
seen in other methods.

3. RANKCLIP
RANKCLIP efficiently leverages the many-to-many rela-
tionships in real-world data by focusing on both matched
and unmatched pairs. As in Fig. 2, it not only identifies if an
image-text pair matches but also assesses their relative se-
mantic similarities to other images and texts of both modal-
ities in the dataset through self-supervised ranking consis-
tency. Uniquely, RANKCLIP employs a list-wise loss for
training batches, distinguishing it from other methods that
solely rely on pair-wise relationships, as discussed in §2.

3.1. Ranking Model Formulation
RANKCLIP leverages the Plackett-Luce (PL) ranking
model [20, 32, 41] to estimate the probability distribution
over rankings for every image-text pair (Vi, Tj), so that the
consistency in their relative ordering with respect to a ref-
erence ranking can be measured. Specifically, for a given
data pair, whether it is in-modal (image-image, text-text),
or cross-modal (image-text), we calculate its in- or cross-
modal cosine similarity Sij to serve as the score when mea-
suring the alignment of its ranking with respect to another
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Figure 2. Overview of RANKCLIP. Unlike conventional contrastive loss, which includes only the middle term, RANKCLIP introduces
both cross-modal and in-modal consistency terms by minimizing a self-supervised, list-wise ranking loss. Paired images and texts are
indicated by matching contour line colors. V , T , and S represent image embeddings, text embeddings, and similarity scores, respectively.

reference ranking yref.
Following [41], we first sort the reference ranking in a

descending order to construct the optimal ranking y∗, and
assume that the ego ranking y is sampled from y∗. The
probability that item d with score Sij is ranked kth in the
ego ranking y from a set of items D is the score of eSij

divided by the sum of scores for the items that have not
been placed yet:

π(d | y1:k−1, yref,D) =
eSij∑

d′∈D\y1:k−1
eS

′
ij

, (1)

where y1:k−1 = [y1, y2, ..., yk−1] denotes the set of items
ranked before d. Consequently, the probability of the entire
ranking y is the product of all individual placement proba-
bilities:

P(y, yref) =

K∏
k=1

π(yk | y1:k−1,yref,D). (2)

RANKCLIP’s objective is to maximize the consistency
log-likelihood of the list ranking in one modality to-
wards the reference ranking (from the same/in-modal and
different/cross-modal data), which conveniently aligns with
minimizing the negative log-likelihood loss:

LPL = − logP(y, yref) (3)

3.2. Cross-modal Consistency Ranking
As illustrated by the green box in Fig. 2, RANKCLIP uti-
lizes secondary relationships between unmatched visual and

textual representations by constructing a list-wise rank loss.
This approach ensures that the semantic similarity rankings
between one image and multiple texts align with those be-
tween one corresponding text and multiple images. For ex-
ample, as shown in Fig. 1, from the dog perspective, the se-
mantic distance between dog image and cat text is closer
compared to the plane text. This relationship should also
apply between the dog text and the cat, plane images.
Mathematically, Eq. (3) can be specified as:

Lcross-modal = − logP(yimage-text,ytext-image) (4)

= − logP(v̂ · t̂T, t̂ · v̂T) (5)

By optimizing Eq. (4), RANKCLIP enhances its ability to
bridge the semantic gap between modalities by leveraging
nuanced unmatched correlations. This can also be viewed
as learning a symmetric cosine-similarity matrix, further re-
inforcing semantic consistency across modalities.

3.3. In-modal Consistency Ranking
The pink box in Fig. 2 highlights the in-modal consistency
component of the proposed rank loss. RANKCLIP ensures
semantic consistency within each modality – image to im-
age and text to text – enhancing the use of secondary un-
matched relationships as an optimization objective. The un-
derlying principle is that similar images should correspond
to similar texts. For example, in Fig. 1, from the dog image
perspective, the cat image is the most similar, followed
by the plane image. This relationship should hold true



ImageNet1K
MSCOCO

Image-to-Text Retrieval Text-to-Image Retrieval
Top-1 Top-3 Top-5 Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

CLIP [43] 9.06% 16.94% 21.63% 6.68% 18.36% 26.94% 3.70% 9.74% 14.04%
CyCLIP [19] 9.40% 17.32% 21.72% 6.50% 19.34% 29.14% 3.72% 11.16% 16.06%

ALIP [58] 9.71% 18.31% 23.07% 6.04% 18.04% 26.92% 3.70% 10.22% 14.38%
RANKCLIP 10.16% 19.57% 24.01% 7.18% 19.46% 28.48% 3.74% 10.28% 14.18%

Table 1. Zero-shot top-1, top-3, and top-5 classification accuracy on ImageNet1K, along with retrieval performance on MS-COCO. The
proposed RANKCLIP consistently outperforms all baselines across both tasks. All models are trained on CC3M with ViT-B/32 backbone.

for their corresponding texts as well, where we utilize this
to construct our y and yref from Eq. (3). Mathematically,
Eq. (3) can be specified as:

Lin-modal = − logP(ytext-text,yimage-image) (6)

= − logP (̂t · t̂T, v̂ · v̂T) (7)

where t̂ and v̂ are the text and image batch embedding ma-
trix, respectively. Via Eq. (6), the model can efficiently
leverage the nuanced in-modal relationships to learn a richer
and more structured semantic representation.

3.4. RANKCLIP Loss
Combining both cross-modal and in-modal consistency
with the traditional contrastive loss (more details in Ap-
pendix B), the complete rank loss is thus formulated as:

LRANKCLIP = LCLIP + λ1Lin-modal + λ2Lcross-modal (8)

which is also depicted in Fig. 2. By supplementing the
pairwise contrastive loss with cross-modal and in-modality
ranking consistency loss, RANKCLIP systematically or-
ganizes embeddings to fully exploit both global and fine-
grained unmatched relationships, which enhances the learn-
ing of more informative and accurate representations, better
supporting downstream multi-modal tasks.

3.5. Training Recipe on Selecting λ1 and λ2

In the early stage of pre-training, rank consistency is highly
unstable due to random initialization. Overemphasizing
ranking consistency at this stage can impede the optimiza-
tion of the embedding space. To address this, we gradually
increase the weights λ1 and λ2 of the ranking loss as train-
ing progresses. Specifically, we have:

λ1 = λ2 = clip
(
3i− 1

n− 1
, 0, 2

)
where i and n denote the current training epoch and total
number of epoch, respectively. The full RANKCLIP frame-
work is outlined in Algorithm 1.

4. Experiments
4.1. Experimental Setup
Baselines. The most direct baseline to RANKCLIP is
the original CLIP [43]. To further demonstrate the supe-

rior performance of RANKCLIP, we include CyCLIP [19],
which introduces cyclic consistency constraints to enforce
more robust alignment between visual and textual represen-
tations, improving generalization and semantic coherence.
We also include ALIP [58], which leverages synthetic cap-
tions to enhance vision-language representation learning.
More specifically, it employs a unique architecture that dy-
namically adjusts sample and pair weights to mitigate the
impact of noisy or irrelevant data, making its approach com-
plementary to ours. The training procedures and parameters
for all models are detailed in Appendix A.
Data. All approaches are pretrained on the Conceptual
Captions 3M (CC3M) dataset [48], which contains approxi-
mately 3.3 million text-image pairs. Although significantly
smaller than CLIP’s original dataset [24], CC3M remains
a standard benchmark for vision-language pretraining, en-
abling strong zero-shot performance [2, 19, 28, 36, 53]. As
discussed in §5.2, we also train CLIP and RANKCLIP on a
larger 15M-image subset of YFCC100M [54] (YFCC15M)
to study the effect of scaling up the dataset size.

4.2. Zero-shot Classification
We evaluate the zero-shot classification performance of
CLIP [43], CyCLIP [19], ALIP [58], and RANKCLIP on
ImageNet1K [12, 46]. As shown in Table 1, RANKCLIP
consistently outperforms CLIP, which highlight the effec-
tiveness of ranking consistency in enhancing language-
image alignment with the same training data. Compared
to CyCLIP [19], which enforces cyclic consistency to im-
prove semantic coherence, RANKCLIP achieves higher ac-
curacy across all metrics, suggesting that ranking consis-
tency provides a more direct and effective regularization
for representation learning. Additionally, RANKCLIP sur-
passes ALIP [58], indicating that ranking consistency is a
stronger alternative to synthetic caption-based supervision.
Notably, RANKCLIP shows the most significant improve-
ment in top-1 accuracy, reinforcing its practical advantages
where the highest-ranked prediction is most critical.

4.3. Zero-shot Cross-modal Retrieval
We further evaluate RANKCLIP on zero-shot cross-modal
retrieval tasks, including image-to-text and text-to-image
retrieval, using the MSCOCO [30] dataset. As shown in
Table 1, RANKCLIP outperforms all baselines, though the



ImageNetV2-Matched ImageNetV2-Threshold ImageNetV2-Top ImageNet-R
Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5

CLIP [43] 7.53% 14.99% 19.61% 8.89% 17.22% 21.86% 10.76% 19.80% 24.87% 9.36% 10.56% 19.76%
CyCLIP [19] 7.68% 15.07% 19.11% 9.10% 17.42% 21.94% 11.20% 20.18% 25.34% 9.23% 16.72% 21.64%

ALIP [58] 7.82% 15.56% 19.81% 9.65% 18.31% 22.85% 11.43% 20.88% 26.10% 10.92% 20.27% 26.24%
RANKCLIP 9.01% 16.95% 21.12% 10.32% 19.31% 24.13% 12.31% 22.11% 27.17% 11.34% 20.88% 26.94%

Table 2. Zero-shot top-1, 3, and 5 accuracy on ImageNet1K variants with natural distribution shifts. Compared to baselines, RANKCLIP
achieves higher accuracies. Notably, these gains are more pronounced than on standard ImageNet1K, highlighting improved robustness.
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CLIP [43] 77.6% 56.2% 43.2% 22.6% 39.7% 60.0% 40.4% 51.0% 79.0% 50.5% 52.0%
CyCLIP [19] 76.8% 54.3% 45.8% 19.2% 37.5% 58.6% 44.2% 51.5% 82.3% 41.3% 51.2%

ALIP [58] 71.1% 49.1% 47.1% 17.4% 36.1% 51.5% 41.9% 53.3% 81.0% 38.3% 48.7%
RANKCLIP 78.4% 56.6% 42.4% 23.4% 40.2% 60.6% 40.6% 53.4% 79.6% 47.7% 52.3%

Table 3. Linear probing accuracy on 10 downstream datasets using a ViT backbone.

improvements are less pronounced compared to zero-shot
classification. This smaller margin of improvement may
be attributed to the increased complexity of retrieval tasks,
which require fine-grained image-text alignment across
varying resolutions and object details – challenges distinct
from the more direct pattern recognition in classification.

4.4. Robustness to Distribution Shifts

To evaluate the robustness of RANKCLIP under distribu-
tion shifts, we test all approaches on three variants of Ima-
geNetV2 [45] and ImageNet-R [22], which assess resilience
to different real-world deviations from ImageNet1K. As
shown in Table 2, RANKCLIP consistently outperforms all
baselines, achieving the highest accuracy across all datasets.
These results indicate that RANKCLIP not only improves
standard zero-shot classification but also enhances adapta-
tion to real-world distribution shifts.

4.5. Linear Probing

We further assess whether the advantages of ranking con-
sistency persist when supplemented with in-domain super-
vision. Specifically, we apply linear probing, where pre-
trained encoders remain fixed while a logistic regression
classifier is trained on domain-specific datasets. We evalu-
ate on 10 standard image classification benchmarks, includ-
ing CIFAR-10, CIFAR-100, DTD [9], FGVG-Aircraft [33],
Food101 [1], GTSDB [52], OxfordPets [40], SST2 [50],
STL-10 [10], and SVHN [37]. As shown in Table 3,
RANKCLIP achieves the highest average accuracy, demon-
strating that ranking consistency enhances generalization
even with additional in-domain supervision.

Figure 3. Effect of λ1 and λ2 on zero-shot classification (Ima-
geNet1K) and retrieval (MSCOCO).

5. Ablation Studies
5.1. Different Weights of RANKCLIP Loss
In Eq. (8), we define the RANKCLIP loss as a linear com-
bination of the original contrastive loss and the in-modal
and cross-modal ranking consistency losses, weighted by
λ1 and λ2, respectively. In §3.5, we introduce a train-
ing strategy that adaptively adjusts λ1 and λ2 at different
stages of training. In this section, we analyze the impact of
these weights and demonstrates that adaptive weighting fur-
ther enhances RANKCLIP ’s performance. Notice that all
model variants follow the same pretraining setup detailed in
Appendix A. As shown in Fig. 3, RANKCLIP outperforms
CLIP even with fixed λ1 and λ2, highlighting the effective-
ness of ranking consistency. And the adaptive weighting
strategy further boosts accuracy by preventing the under-
utilization of ranking consistency at low weights and avoid-
ing disruptions to contrastive learning at high weights.

5.2. Different Data Sizes
To assess the scalability of RANKCLIP, we trained both
CLIP and RANKCLIP on 500k, 750k, 1M, and 3M text-



Figure 4. Ablation studies of CLIP and RANKCLIP trained with different data sizes. Left: zero-shot top-1 classification accuracy on
ImageNet1K with various data sizes randomly sampled from CC3M. RANKCLIP consistently outperforms CLIP with significant margins.
Right: zero-shot top-1 classification accuracy on ImageNet1K (horizontal axis) and ImageNet1K-R (vertical axis). RANKCLIP demon-
strates better robustness as well as accuracy.

Method Vision
Backbone

ImageNet1K
MSCOCO

Linear Probing
Avg. Acc.Image-to-Text Retrieval Text-to-Image Retrieval

Top-1 Top-3 Top-5 R@1 R@5 R@10 R@1 R@5 R@10
CLIP [43]

RN50
21.6% 36.9% 44.9% 15.6% 36.4% 48.4% 6.7% 15.2% 20.1% 64.2%

RANKCLIP 30.9% 49.4% 57.6% 19.5% 42.6% 54.8% 7.5% 16.2% 21.6% 68.9%
CLIP [43]

ViT-B/32
20.7% 35.0% 42.4% 11.9% 29.4% 40.8% 5.1% 12.9% 17.9% 60.7%

RANKCLIP 26.2% 41.4% 48.9% 13.8% 33.8% 45.9% 6.0% 13.6% 18.6% 61.3%

Table 4. Zero-shot evaluation of CLIP and RANKCLIP trained with different vision backbones (ResNet-50 (RN50) and ViT-B/32) on
ImageNet1K classification, MSCOCO cross-modal retrievals, and linear probing. “R@k” denotes Recall@k.

image pairs from CC3M, as well as 15M pairs from
YFCC15M, following the procedure in Appendix A. Fig. 4
compares their performance on zero-shot top-1 classifica-
tion accuracy for ImageNet1K (left) and averaged linear
probing results (middle), where RANKCLIP consistently
outperforms CLIP. Full, non-averaged linear probing results
are provided in Appendix 7. Notably, the performance gains
of RANKCLIP become more pronounced as dataset size
scales from 1m to 15m, highlighting its superior scalabil-
ity, which is critical for language-image pretraining.

Fig. 4 (right) further illustrates RANKCLIP’s robustness
across different dataset sizes. The horizontal axis represents
top-1 accuracy on standard ImageNet1K, while the verti-
cal axis shows accuracy on ImageNet1K-R. The black di-
agonal (y = x) denotes ideal robustness, with deviations
below it indicating degradation under distribution shifts.
RANKCLIP remains well above the red baseline, which
represents typical in-distribution to out-of-distribution gen-
eralization [35], and stays close to the ideal line, demon-
strating strong robustness.
5.3. Different Backbones: RN50 vs. ViT
We compare RANKCLIP and CLIP across ResNet-50
(RN50) and ViT-B/32 backbones to assess its generaliza-
tion. As shown in Table 4, RANKCLIP consistently out-
performs CLIP across all tasks. Specifically, for zero-shot
classification on ImageNet1K, RANKCLIP improves top-1
accuracy by +9.3% with RN50 and +5.5% with ViT-B/32,

demonstrating stronger feature learning. In cross-modal re-
trieval, RANKCLIP achieves +3.9% in image-to-text and
+0.8% in text-to-image with RN50, with smaller but con-
sistent gains for ViT-B/32. RANKCLIP also improves lin-
ear probing accuracy by +4.7% with RN50 and +0.6% with
ViT-B/32, confirming its advantage in representation learn-
ing. While both architectures benefit, RN50 sees the largest
gains, suggesting that ranking consistency particularly en-
hances hierarchical feature extraction in CNNs.

6. Analysis

6.1. Modality Gap

We analyze the modality gaps of CLIP and RANKCLIP by
visualizing 250 text-image pair embeddings, reduced to two
dimensions using UMAP [34], and presenting a histogram
of the gaps. The modality gap [29] refers to the separation
between text and image embeddings in multimodal models,
hindering joint representation learning. This gap, inherent
from initialization and reinforced by contrastive learning in
CLIP, challenges effective language-image modeling. Re-
cent studies [27, 38, 51] suggest that reducing this gap im-
proves multimodal representations and downstream perfor-
mance. As shown in Fig. 6, RANKCLIP exhibits a signifi-
cantly smaller modality gap than CLIP, demonstrating that
our ranking consistency approach effectively enhances text-
image alignment.
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Figure 5. For a given text query, we present the top ten most semantically relevant images (ordered from left to right) obtained through
both CLIP and RANKCLIP. In comparison to CLIP, our approach consistently retrieves images that more comprehensively align with the
textual description, maintaining this advantage even after the correct reference image appears in the ranked results.

6.2. Alignment and Uniformity

Beyond reducing modality gap, effective contrastive learn-
ing should ensure a broad and uniform distribution over a
hypersphere [56]. These objectives – similarity and unifor-
mity – are quantified by alignment and uniformity scores,
respectively. Following Goel et al. [19] and the notations
in §3, we compute the alignment score SA and uniformity
score SU as:

SA =
1

N

N∑
j=1

ÎTj T̂j , (9)

SU = log

 1

N(N − 1)

N∑
j−1

N∑
k=1,j ̸=k

exp−ÎT
j T̂k

 (10)

where N is the number of text-image pairs. SA captures the
average cosine similarity between corresponding text and
image embeddings, while SU measures how evenly embed-
dings are spread across the space. High alignment indicates
strong correlation between paired embeddings, whereas low
uniformity suggests diverse and efficient embedding distri-
bution—desirable for tasks like retrieval. As shown in Ta-
ble 5, CLIP achieves stronger alignment but suffers from
poor uniformity, leading to redundant representations. On
the other hand, RANKCLIP along with two of its ablated
version, RANKCLIPI and RANKCLIPC presents much
better balance between alignment and uniformity. These
results further suggest that optimizing solely for alignment
or uniformity does not necessarily translate to better task
performance.
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(a) CLIP

(b) RankCLIP

Figure 6. Scatter and histograms plots illustrating modality gaps
of (a) CLIP and (b) RANKCLIP.

CIFAR-10 CIFAR-100 ImageNet1K
SA SU SA SU SA SU

CLIP 0.28 -0.19 0.28 -0.18 0.33 -0.19
RANKCLIP 0.23 -0.14 0.26 -0.13 0.29 -0.13

RANKCLIPC 0.23 -0.13 0.24 -0.12 0.29 -0.14
RANKCLIPI 0.25 -0.15 0.28 -0.14 0.32 -0.17

Table 5. Alignment and uniformity scores of CLIP, RANKCLIP.
RANKCLIPC and RANKCLIPI indicate the solely cross-modal
and in-modal rank loss.

6.3. Qualitative Examples
Class activation maps. To further examine the effects
of ranking consistency, we visualize class activation maps
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Figure 7. Class activation maps for RANKCLIP and CLIP on different objects in the caption from MSCOCO. RANKCLIP has more
precise responses to some nouns compared to CLIP and can accurately locate the region related to the noun.

(CAMs) [47] for RANKCLIP and CLIP in Fig. 7. The re-
sults show that RANKCLIP consistently attends to more
semantically relevant regions in the images. For exam-
ple, when given the caption ‘An airport filled
with planes sitting on tarmacs’, CLIP mis-
takenly highlights surrounding areas, whereas RANKCLIP
focuses precisely on the planes. Similar improvements
are observed across other examples, demonstrating that
RANKCLIP better aligns textual descriptions with visual
concepts. This suggests that ranking consistency enhances
fine-grained feature learning, leading to more localized and
accurate visual grounding.

Text-to-image retrieval. Fig. 5 compares text-to-image
retrieval results from RANKCLIP and CLIP. Given a
query, we display the top-ranked images retrieved by each
model. RANKCLIP consistently retrieves more semanti-
cally aligned images, even beyond the correct reference
image. For instance, in the example of ’A cute cat
laying down in a sink’, correctly identifies a cat
in a sink, whereas CLIP misidentifies it due to the visual
similarity between sinks and toilets. This demonstrates
RANKCLIP ’s ability to capture fine-grained semantic dis-

tinctions, reinforcing its advantage in retrieval tasks that de-
mand precise understanding.

7. Conclusion
In this paper, we introduce RANKCLIP, a novel language-
image pretraining method that integrates ranking consis-
tency into the contrastive learning paradigm. RANKCLIP
aims to better understand the complex many-to-many rela-
tionships in diverse text-image pairs by optimizing a self-
supervised, list-wise rank loss. Through extensive experi-
ments, including zero-shot classification, robustness to dis-
tribution shifts, linear probing, and zero-shot image-text re-
trieval, RANKCLIP not only enhances performance but also
improves model robustness and semantic comprehension,
outperforming the baseline CLIP and another state-of-the-
art model ALIP. Our ablation studies and analyses further
demonstrate and interpret the significance of each compo-
nent of RANKCLIP in boosting performance and under-
standing across modalities. We believe that the methodolo-
gies and principles of RANKCLIP will inspire further re-
search and lead to the development of models with a deeper
understanding of the intricate interactions between visual
and textual data.
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Appendix

A. Training Procedures
A.1. Implementation Details
For CLIP [43], we use the official implementation released by OpenAI1. And for ALIP [58], we also use the official im-
plementation released by the paper authors2. As the proposed RANKCLIP essentially shares the same model architecture
(separate vision, text encoders, projection layer, and a classification head) as CLIP, we build upon the CLIP code repository
for our model construction3. We set the scaling parameters for cross-modal (λc) and in-modal (λi) ranking consistency to
1/16 and 1/16 respectively throughout all the experiments unless otherwise noted. All CLIP, ALIP and RANKCLIP models
are initialized from scratch without loading any existing weights. And the embedding sizes for both modalities all project to
1024 across the three models.

A.2. Training Parameters
Following CLIP [43], we adopt the ResNet-50 [21] and transformer architectures [13] for image and text encoding, respec-
tively. Training is conducted from scratch over 64 epochs using a single NVIDIA A100 GPU, with a batch size of 512, an
initial learning rate of 0.0005 employing cosine scheduling, and 10,000 warm-up steps.

A.3. Training Time Consumption
we conducted the experiments using the same hardware specifications. The table below shows the time consumption for
training our RankCLIP and CLIP models with 50K samples from CC3M using a single NVIDIA A100 GPU.

Table 6. Training Details

Time consumption Dataset size epochs batch size model name
CLIP 1d 2h 54m 48s 50K 64 512 RN50

RANKCLIP 1d 1h 4m 23s 50K 64 512 RN50

As shown in the table, the difference in time consumption is negligible. Interestingly, our method is slightly faster than
CLIP, but we think it may be attributed to hardware optimizations or variance.

B. CLIP Preliminaries
CLIP [43] has been a prominent method for learning detailed multimodal representations through the alignment of images
and texts. Given a set D = {(Vj , Tj)}Nj=1 of N image-text pairs, where Vj denotes an image and Tj is the corresponding
text, the goal is to learn representations that map semantically similar images and texts closer in the embedding space, while
dissimilar pairs are distanced apart. More specifically, the foundational CLIP model employs two encoders: an image encoder
fI : I → Rm that processes raw images into visual embeddings and a text encoder fT : T → Rn which encodes textual
data into text embeddings. Then both the text and visual features are projected to a latent space with identical dimension.
Formally, the embeddings for a text-image pair (Vj , Tj) are denoted as vk = fI(Vj) and tj = fT (Tj), respectively. The
embeddings are then normalized to lie on an unit hypersphere by enforcing l2-norm constraint:

v̂j =
vj

∥vj∥2
, t̂j =

tj
∥tj∥2

. (11)

so that the magnitude information is erased and only direction is preserved.
To align the image and text representations, a contrastive loss function, typically a variant of the InfoNCE loss [39], which

optimizes the similarity of the matched pair against unmatched pairs, is utilized, i.e.:

LCLIP = − 1

2N

N∑
j=1

[
log

exp(v̂⊤j t̂j/τ)∑N
k=1 exp(v̂

⊤
j t̂k/τ)︸ ︷︷ ︸

1

+ log
exp(t̂⊤j v̂j/τ)∑N
k=1 exp(t̂

⊤
j v̂k/τ)︸ ︷︷ ︸

2

]
(12)

1CLIP repository on GitHub: https://github.com/openai/CLIP.
2ALIP repository on GitHub: https://github.com/deepglint/ALIP.
3RANKCLIP repository will be released upon acceptance.
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CLIP RN50 80.12% 58.50% 57.18% 39.75% 59.14% 72.41% 61.73% 54.48% 86.01% 58.92%
3m RANKCLIP RN50 78.29% 56.24% 57.82% 39.30% 58.63% 74.13% 64.35% 55.02% 86.69% 60.68%

CLIP ViT-B/32 77.60% 56.15% 43.19% 22.59% 39.72% 62.05% 40.39% 50.96% 78.99% 50.53%
RANKCLIP ViT-B/32 78.42% 56.64% 42.39% 23.43% 40.19% 60.63% 40.56% 53.32% 79.60% 47.72%

CLIP RN50 78.81% 56.32% 61.49% 25.83% 61.64% 68.76% 60.37% 55.57% 89.82% 47.99%
15m RANKCLIP RN50 83.27% 62.96% 65.96% 32.19% 68.11% 74.25% 67.40% 56.34% 94.20% 53.06%

CLIP ViT-B/32 82.97% 62.55% 49.47% 24.48% 52.46% 63.55% 50.78% 52.66% 87.14% 46.38%
RANKCLIP ViT-B/32 82.79% 59.89% 52.50% 23.94% 56.44% 61.58% 52.98% 53.60% 89.01% 42.16%

Table 7. Linear probing accuracy on 10 downstream datasets.

where the first term 1 contrasts images with the texts, the second term 2 contrasts texts with the images, and τ denotes
a temperature scaling parameter that adjusts the concentration of the distribution. The optimization of Eqn. (12) results in
embeddings where the cosine similarity between matched image-text pairs is maximized in comparison to unmatched pairs,
thus achieving the desired alignment in the joint embedding space.

Despite the efficacy of CLIP in learning correlated multimodal embeddings, it inherently relies on strict pairwise matched
comparisons and fails to capture the more complex, fine-grained nature of semantic similarity within and across modalities
that are generally treated as unmatched. This observation motivates the development of RANKCLIP, which innovates beyond
binary pairwise contrasts to consider holistic listwise consistency within and across modalities.

B.1. Additional Experiments
We conduct the linear probing experiment under different training datasize from 3m to 15m as shown in 7.
B.2. Pseudo-code

Algorithm 1 Pseudo-code of RANKCLIP loss in a Python-like style.

# emb_pred: predictions from the model, shape [embs_length, embs_length]
# emb_true: ground truth labels, shape [embs_length, embs_length]

def rank_loss(emb_pred, emb_true):
# Shuffle for randomised tie resolution
emb_pred_shuff = emb_pred[:, random_indices]
emb_true_shuff = emb_true[:, random_indices]
# Record the rank label index
emb_true_sorted, indices = emb_true_shuff.sort(descending=True, dim=-1)
# Ranking the pred embedding by the true indices
preds_sorted = gather(emb_pred_shuff, dim=1, index=indices)
# Implementation of the Eq.1, Eq.2 and Eq.3
max_pred_values, _ = preds_sorted.max(dim=1, keepdim=True)
preds_sorted_minus_max = preds_sorted - max_pred_values
cumsums = cumsum(preds_sorted_minus_max.exp().flip(dims=[1]), dim=1).flip(dims=[1])
loss = (log(cumsums) - preds_sorted_minus_max) * scale_factor
return mean(sum(loss, dim=1))

# Cross-modal embeddings
logits_text_per_image=image_embeds @ text_embeds.T
logits_iamge_per_text=logits_text_per_image.T
# In-modal embeddings
logits_image_per_image=image_embeds @ image_embeds.T
logits_text_per_text=text_embeds @ text_embeds.T
# Compute the cross-modal rank loss
Cross_modal_loss=rank_loss(logits_text_per_image,logits_image_per_text)+rank_loss(logits_image_per_text

, logits_text_per_image)
# Compute the in-modal rank loss
In_modal_loss=rank_loss(logits_image_per_image,logits_text_per_text)+rank_loss(logits_text_per_text,

logits_image_per_image)
# Rank loss
Rank_loss=Contrastive_loss+Cross_modal_loss+In_modal_loss
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